Home > Shop by Interest > Insulin Mimickers > Fierce 1.87lb SAN

Home > Bodybuilding Supplements > Fierce 1.87lb SAN

Home > All Brands  > SAN Nutrition > Fierce 1.87lb SAN

Fierce Strength and Endurance Amplifier by SAN

Fierce 1.87lb SAN
Fierce 1.87lb SAN
Item #:SAN35
Regular Price:$59.95
Our Low Price:$34.99, 2/$67.99
Package Insurance?:
Add Shaker Cup?:
Fierce by SAN Nutrition will increase your endurance, taking your workout to a new, never-experienced before level. Fierce will give you more pre-workout strength , allowing you to lift more weight than you ever have before for longer periods of time without becoming tired. Fierce is formulated with a number of very important ingredients, each designed to contribute to an overall ergogenic and endurance-enhancing effect. This unique formula is broken down into 5 categories with each working together with one another.

Cell Hydration Matrix

Of all the ingredients seen in Fierce, creatine in its various forms is perhaps the most familiar to supplement users. Numerous studies have shown the creatine consumption leads to increased strength and athletic performance. There are several theories about how creatine works. The original theory, and perhaps still the most widely accepted, is that oral creatine supplementation increases total creatine and creatine phosphate (CrP) in human skeletal muscle. An increased muscle CrP concentration increases its availability for ATP synthesis. This additional ATP can be used by the muscle to perform work.

Studies have also shown that creatine supplementation increases the glycogen content of skeletal muscle along with an increase in myosin heavy chain synthesis (Nelson et al. 2001). The increases in lean body mass associated with creatine use may be a result of creatine’s ability to elevate insulin like growth factor 1 (IGF-1) in muscle tissue (Deldicque et al 2005).

Why do we see Malate combined with creatine in the formulation? Malate is an intermediate in the so-called Tricarboxylic Acid Cycle (TCA). While being processed in the TCA, each kind of major fuel is converted to acetyl groups, which are handled by attachment to a particular coenzyme known as coenzyme A. Ultimately ATP is produced from another compound, NADH, generated by the TCA.

Malate is dehydrogenated in the TCA cycle to oxaloacetate, the concentration of which most critically controls the rate of aerobic ATP production. During prolonged aerobic activity, and in patients suffering from malate deficiency, malate becomes depleted and the TCA is unable to produce ATP fast enough to meet the demands of working muscle. One classic disease characterized by malate deficiency is fibromyalgia: symptoms include muscular skeletal pain and fatigue. When patients suffering with this disease are given malate, their energy levels improve dramatically (Russell et al 1995).

Not only will patients suffering from malate deficiency benefit from malate supplementation but also competitive athletes. Because as mentioned above, strenuous, prolonged aerobic activity depletes the body’s malate stores.

Creatine-Ethyl-Ester is a synthetic analog of the popular supplement creatine. The main difference between the two compounds is that the carboxylic acid group of creatine was molecularly modified through the attachment of an ester linkage. In doing this, we are able to create an organic compound that possesses both increased water solubility and enhanced muscle partitioning effects over ordinary creatine monohydrate. Once in the body, regular creatine monohydrate rapidly loses its water molecule yielding the byproduct ‘creatinine’. Although it is a natural by-product of creatine metabolism, creatinine possesses numerous undesirable side effects to the athlete. It was therefore significant to discover that treating the creatine with Ethyl alcohol and hydrogen chloride not only removed the undesirable water molecule from creatine, but also yielded a pure creatine-Ethyl-ester compound that is completely devoid of both water and creatinine.

Once in the gastrointestinal tract the Creatine-Ethyl-ester is rapidly hydrolyzed to pure creatine by the esterase enzyme yielding an immediate ATP substrate without any stomach discomfort or bloat. ATP (adenosine triphosphate/ or three phosphates attached to adenosine, which is a nucleoside) is the necessary energy molecule that fuels muscular contractions by donating one phosphate group as cellular energy.

Nitro NO One of the major controlling factors in the expansion and contraction of blood vessels is nitric oxide (NO). In the body NO is produced from the amino acid arginine. When exposed to NO, blood vessels dilate, allowing for increased blood flow due to the vessel’s increased crossectional area. Working muscles require a copious blood supply to deliver nutrients and carry away waste products. Since arginine is the direct precursor to NO, bodybuilders have supplemented with arginine-based compounds to increase NO production. This leads to the sought-after “pump” associated with muscle blood vessels engorged with blood.

Arginine alpha-ketoglutarate (AKG) is reportedly better absorbed than arginine, and has a more sustained effect on NO production. AKG itself has been used extensively for nutritional support in various illnesses and in the post surgery setting.

Ornithine alpha-ketoglutarate (OKG) is added to Fierce as a secondary route to raise plasma arginine levels and subsequently NO in the body. OKG is documented to work in parallel with AKG to also raise levels of glutamine, polyamines, growth hormone and insulin. In turn, these elevations prevent catabolic muscle wasting that usually follows post workout. As a note, OKG is often used in clinical settings as a first aid medicine(to carry away muscle waste products) in burn victims, and thereby, enhances recovery and wound healing. It is also documented to help regenerate skin and muscle tissue.

Creatine Assimilator Glycocyamine (GAA) and Guanidinopropionic Acid (GPA) have been added to Fierce to mimic the actions of insulin in that they lower blood glucose in animal studies (Meglasson et al 1993). This appears to be the result of increased expression of GLUT-4, a major glucose transporter (Ren 1993). GAA is also converted in the liver into creatine, adding to plasma creatine levels outside that of Dicreatine-Malate and Creatine-Ethyl- Ester (see above). Because of the insulin mimetic, the creatine transport effects of glycocyamine and GPA, taken along with Dicreatine-Malate and Creatine-Ethyl-Ester is superior, to simply taking more creatine, by virtue of secondary and third biochemical pathways.

Betaine Anhydrous has been well characterized as an agent capable of lowering levels of homocysteine in the body. High plasma concentrations of homocysteine may increase risk of cardiovascular disease. Betaine lowers plasma homocysteine up to 20% in normal healthy humans (Olthof et al 2005). One interesting study looked at the effects of betaine on both trained and untrained animals. In the untrained group betaine lowered plasma lactate levels post-exercise significantly, implying that betaine allows for a faster recovery from exercise. For your information, muscle fatigue is believed to be due, at least in part, to lactic acid buildup. In other studies, betaine increased muscle area and decreased fat thickness.

Duralast Matrix Glucuronolactone is a naturally occurring chemical compound produced by the metabolization of glucose in the human liver. It has received some public notoriety due to its inclusion in energy type drinks like Red Bull. Some of its positive attributes have been linked to acting as an antidepressant and stimulant, and in helping memory retention and concentration. Glucuronolactone is also a direct precursor to Taurine therefore aiding in improved mental performance and reaction time. In clinical settings, Glucuronolactone was found to reduce fatigue with sleep related driving incidents.(Reyner et al 2002)

L-Aspartic acid is a non-essential amino acid, synthesized from glutamate or otherwise derived from protein. Its chief mechanism is believed to be involved in the repair of DNA and in assisting carbohydrate metabolism. It is a carrier molecule for transporting magnesium & potassium in and out of living cells. L-Aspartic acid is also a major excitatory transmitter in your brain making it useful especially to those involved in sports such as basketball, football, etc. which require a quick reaction. Just like Malic acid, aspartic acid is an intermediate in the TCA cycle (see above) and thus, extremely useful in removing ammonia from the body. Last, but not least, human studies, have shown that L-Aspartic acid decreases fatigue after strenuous exercise thus increasing endurance levels.

b-Alanine is a direct precursor to Carnosine. Carnosine is extremely effective in buffering hydrogen ions, which are generally elevated in exercising athletes. Under normal exercising conditions, hydrogen ions rise in response to energy production resulting in a subsequent fall of muscle PH. With low intra-muscular PH levels athletes often times get fatigued, resulting in sub-par performance. The extent to which Carnosine can delay fatigue (acidosis) is correlated to its content in muscle tissue. (Tallon et al 2004-2005)

In essence, the addition of b-Alanine (and subsequently Carnosine) in Fierce is related to its effects on preventing your muscles from becoming too acidic during times of stress. Since Carnosine works alongside creatine (which is considered a phosphate donor) in buffering the intra-muscular system from becoming too acidic, it makes perfect sense to stack the two together. Simply stated, b-Alanine makes creatine work better through a second and independent pathway.

Neuro Cognitizing Substrates Taurine was included for its antioxidant properties and may be responsible for the cytoprotective effect that is reported throughout the literature. Dawson et.al 2002 subjected animals to 90 minutes of strenuous downhill running after which muscle tissue damage was assessed. The taurine supplemented group not only showed less extensive tissue damage, but also showed that running performance improved. Exercise has been shown to deplete the muscle content of taurine. In light of its ergogenic actions, this warrants the need for taurine supplementation during exercise.

A similar experiment involving young men showed equal results: After exhaustive exercise, the taurine group exhibited less cellular damage and enhanced performance (Zhang et al 2004). Quoting from the study,

"Significant increases were also found in VO(2)max, exercise time to exhaustion and maximal workload in test with taurine supplementation ( p<0.05). After supplementation, the change in taurine concentration showed positive correlations with the changes in exercise time to exhaustion and maximal workload. The results suggest that taurine may attenuate exercise-induced DNA damage and enhance the capacity of exercise due to its cellular protective properties."

What is even more exciting is that Taurine works extremely well with glucuronolactone (see above) in aiding mental performance, clarity and reaction time.

N-Acetyl-L-Glutamine (NAG) is known in foreign countries as an anti-ulcer support agent that works by forming a protective layer over the lining of the stomach. It accomplishes this phenomenon by activating a chemical reaction that serves as an antiacid buffer while suppressing the secretion of pepsin, a protein-digesting enzyme produced in the stomach.

More recent clinical research indicates that NAG has psycho-stimulant properties while improving memory and concentration in persons showing signs of senile dementia. Chemically speaking, N-Acetyl-L-Glutamine is the acetylated version of the most abundant amino acid found in skeletal muscle tissue: glutamine. NAG is more stable in water and metabolically efficient at delivering glutamine’s biological effects over conventional Glutamine or Glutamine Peptides. As a glutamine donor, NAG has shown great promise in the treatment of the critically ill, since it supports the immune system. (Haussinger et al 2001)

Overtraining may lead to immune depression and it has been proposed, but never conclusively demonstrated in controlled trials, that glutamine could speed recovery in overworked athletes.

Tyrosine is a nonessential amino acid synthesized in the body from phenylalanine. It is an important nutritional ingredient and chief factor in the biosynthesis of the brain neurotransmitters: epinephrine, norepinephrine, and dopamine. As such, Tyrosine has shown great promise to treat depression because it is a precursor for the neurotransmitters that are responsible for transmitting nerve impulses. In fact, in one study involving healthy men, after being fed a deficient phenylalanine/tyrosine diet, the participants experienced depressed mood and alertness. (Grevet et al.2002). Indicating, that tyrosine is essential to combat depression.

Tyrosine has been tested on humans for increasing endurance regardless of anxiety and stress, as well as extreme fatigue. It was further documented in research studies that tyrosine supplementation resulted in increased performance over a control group (Avraham et al. 2001).

Tyrosine is also considered an antioxidant, reacting with free radicals that can cause damage to cells.

Caffeine is our last and final ingredient which is known as a competitive inhibitor of the enzyme cAMP-PDE, thus converting cyclic AMP in cells to its noncyclic form, allowing cAMP to build up. Cyclic AMP participates in the messaging cascade produced by cells in response to stimulation by epinephrine, so by blocking its removal, caffeine intensifies and prolongs the effects of the neurotransmitters: epinephrine and norepinephrine.

The metabolites of caffeine contribute to caffeine's overall powerful effects. Theobromine which is considered a vasodilator increases the amount of oxygen and nutrient flow to the brain and muscles. Theophylline, the second of the three main metabolites, acts as a smooth muscle relaxant that chiefly affects the bronchioles and acts as a chronotrope and inotrope. Thus increasing heart rate and efficiency. The third metabolic derivative, paraxanthine, is responsible for an increase in the fat burning process, which releases glycerol and fatty acids into the blood to be used as a source of fuel by the muscles (Dews et al. 1984).

Supplement Facts: 17g
Servings Per Container: 50

Amount Per Serving % Daily Value*

Calories 0 0%

Calories from Fat 0 0%

Sugars 0 g 0%

Cell Hydration Matrix 4.0 g †
(Dicreatine-Malate, Creatine-Malate, Creatine-Ethyl-Ester HCI)

Neuro Substrates 3.8 g †
(L-Taurine, N-Acetyl-L-Glutamine, L-Tyrosine & Caffeine Anhydrous)

Creatine AssimilatorTM 2.5 g †
(Betaine Anhydrous & Glycocyamine, Guanidinopropionic Acid (3-GPA™)

DuralastTM Matrix 2.4 g †
(Glucuronolactone & L-Aspartic Acid, b-Alanine)

Nitro NO 2.25 g †
(L-Arginine-Alpha-Ketoglutarate & L-Ornithine Alpha-Ketoglutarate)

*Percent Daily Values are based on a 2,000 calorie diet.

†Daily Value Not Established

Other Ingredients: Citric Acid, Calcium Silicate, Natural and Artificial Flavors (Spray Dried Orange Oil, Spray Dried Orange Juice), Aspartame1, Acesulfame-K, F.D. & C. Colors (Red No. 40, Yellow No. 6)

NO Yeast, Corn, Wheat, Sugar, Salt, Soy, Dairy, or Fish added.

1PHENYLKETONURICS: Contains Phenylalanine

Recommended Use: Take 1 scoop and mix into 12oz. of cold water 30 minutes before your workout and/or immediately upon awakening. Warning! Do not exceed one scoop per serving or two scoops per 24 hour period. Space servings at least 6 hours apart. Do not consume past 6pm.

Before beginning any program of weight loss, consult your health care practitioner. ***These statements have not been evaluated by the FDA. This product is not intended to diagnose, treat, cure or prevent any disease.

You can rely on SuperHealthCenter.com to provide low pricing on Fierce by SAN Nutrition and other muscle building matrix.